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1. Introduction

The span of a continuum was defined by A. Lelek in [4]. Since then, several
variants of his definition have been given. The most prevalent of these are the
semispan (see [6]), the symmetric span (see [3]), and, for simple closed curves, the
essential span (see [1]).

It has been asked (see, for instance, [1] and [2]) whether some of these different
quantities always agree for certain classes of continua, particularly for simple triods
and simple closed curves. In this paper, we demonstrate that no two of these
versions of span agree for all simple triods and simple closed curves. We also
include an example which violates a conjectured bound between two versions of
span.

A natural way to construct examples of metric spaces is to look at subsets of R3

with the Euclidean metric (see, for instance, [5], [6], and Section 7 of this paper).
In Section 3 we develop an alternative approach which allows one to construct
a metric for a space with certain distances predetermined. Related results have
been obtained in [7] and [8]. This enables us to prove the existence of spaces with
interesting span properties in Section 6 without producing subsets of R3.

2. Notation

If (X, d) is a metric space, x ∈ X , and A,B ⊂ X , then define

d(x,B) = inf{d(x, b) : b ∈ B}

and
d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

If ε > 0, then the ε-neighborhood of A is

Aε = {x ∈ X : d(x,A) < ε}.

Define also the ε-ball about x with respect to the metric d to be

Sd(x, ε) = {y ∈ X : d(x, y) < ε}.

If ρ is another metric on X , then ρ is equivalent to d if the topologies generated
by ρ and d are identical.

Define the metric d×d on X ×X by

(d×d) ((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

The diagonal of X is ∆X = {(x, x) : x ∈ X} ⊂ X ×X .
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An arc is a space which is homeomorphic to the closed unit interval [0, 1]. A
simple closed curve is a space which is homeomorphic to the unit circle S1.

A simple triod with legs A1, A2, and A3 is a space of the form T = A1∪A2∪A3,
where A1, A2, and A3 are arcs which have a common endpoint o, and which are
otherwise pairwise disjoint. The point o is called the branch point of T .

3. Equivalent Metrics with Given Distances

Theorem 3.1. Let (X, d) be a metric space. Suppose f : X×X → R is a function
such that:

(1) f is Lipschitz continuous with Lipschitz constant k (with respect to the
metric d×d on X ×X),

(2) f(x, y) = f(y, x) for all x, y ∈ X,
(3) f(X ×X) ⊆ [1, 2], and
(4) f ((∆X)ε) = {1} for some 0 < ε ≤ 2

k , where (∆X)ε is the ε-neighborhood
of the diagonal ∆X.

Then there exists an equivalent metric ρ on X such that ρ(x, y) = f(x, y) whenever
d(x, y) ≥ ε

2 , and ρ(x, y) < 1 whenever d(x, y) < ε
2 .

Proof. Define the function ρ : X ×X → R by

ρ(x, y) =

{

f(x, y) if d(x, y) ≥ ε
2

2
εd(x, y) if d(x, y) < ε

2 .

It is clear from the definition of ρ, and from conditions (2) and (3) on f , that
ρ(x, y) = 0 if and only if x = y, and ρ(x, y) = ρ(y, x) for all x, y ∈ X . Hence
to prove that ρ is a metric on X , we need only check that ρ satisfies the triangle
inequality. Let x, y, z ∈ X , and consider the following cases:

Case 1: d(x, y), d(y, z), d(x, z) ≥ ε
2

In this case ρ(x, y) = f(x, y) ≥ 1, ρ(y, z) = f(y, z) ≥ 1, and ρ(x, z) = f(x, z) ≤
2 ≤ ρ(x, y) + ρ(y, z).

Case 2: d(x, y) < ε
2 and d(y, z), d(x, z) ≥ ε

2
Here ρ(y, z) = f(y, z) and ρ(x, z) = f(x, z), so

|ρ(y, z) − ρ(x, z)| = |f(y, z) − f(x, z)|

≤ k · (d×d) ((y, z), (x, z)) by condition (1)

= k · (d(y, x) + d(z, z))

= k · d(x, y)

≤ 2
εd(x, y) since ε ≤ 2

k

= ρ(x, y)

It follows that ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

Case 3: d(x, y), d(y, z) < ε
2 and d(x, z) ≥ ε

2
Note d(x, z) ≤ d(x, y) + d(y, z) < ε

2 + ε
2 = ε, so (x, z) is in the ε-neighborhood

of ∆X . This implies by condition (4) that ρ(x, z) = f(x, z) = 1. Also, since ε
2 ≤

d(x, z) ≤ d(x, y) + d(y, z), we have that 1 ≤ 2
εd(x, y) + 2

εd(y, z) = ρ(x, y) + ρ(y, z).
Thus ρ(x, y) + ρ(y, z) ≥ ρ(x, z).

Case 4: d(x, y), d(y, z), d(x, z) < ε
2

Here ρ(x, y) + ρ(y, z) = 2
εd(x, y) + 2

εd(y, z) ≥
2
εd(x, z) = ρ(x, z).
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Case 5: d(x, z) < ε
2 and d(x, y) ≥ ε

2

In this case, ρ(x, z) = 2
εd(x, z) < 1 and ρ(x, y) = f(x, y) ≥ 1. Therefore ρ(x, y)+

ρ(y, z) ≥ 1 > ρ(x, z).

Because of the symmetry between ρ(x, y) and ρ(y, z) in the inequality ρ(x, y) +
ρ(y, z) ≥ ρ(x, z), we need not consider the remaining cases, as they have already
been dealt with above (specifically in Cases 2 and 5) but with the pairs (x, y) and
(y, z) interchanged. Thus ρ satisfies the triangle inequality, and so it is a metric.

Let x ∈ X and let α > 0. Let α′ = min{α, ε
2}. Then ρ(x, y) < 2

εα
′ ≤ 1 implies

ρ(x, y) = 2
εd(x, y), so d(x, y) < α′ ≤ α, hence Sρ(x,

2
εα

′) ⊆ Sd(x, α). Conversely,

let α′′ = min{α, 1}. Then d(x, y) < ε
2α

′′ ≤ ε
2 implies ρ(x, y) = 2

εd(x, y) < α′′ ≤ α,
so Sd(x,

ε
2α

′′) ⊆ Sρ(x, α). This implies that ρ is equivalent to d. �

Theorem 3.2. Let (X, d) be a metric space. Suppose F,N ⊂ X×X are non-empty
subsets such that:

(1) for some ε > 0, (d×d) (F,N ∪ (∆X)ε) = δ > 0, and
(2) F = F−1, N = N−1.

Then there exists an equivalent metric ρ on X such that ρ(X ×X) ⊆ [0, 2], ρ(F ) =
{2}, and ρ(N) ⊆ [0, 1].

Proof. Let N ′ = N ∪ (∆X)ε. Notice that Fδ/2 ∩N
′

δ/2 = ∅.

Define the function f : X ×X → R by:

f(x, y) =











2 − 1
δ · (d×d) ((x, y), F ) if (x, y) ∈ Fδ/2

1 + 1
δ · (d×d) ((x, y), N ′) if (x, y) ∈ N ′

δ/2
3
2 otherwise

It follows from the fact that F = F−1 and N ′ = (N ′)−1 that f(x, y) = f(y, x)
for all x, y ∈ X . Also, it is clear that 1 ≤ f(x, y) ≤ 2 for all x, y ∈ X . Furthermore,
we claim that f is Lipschitz continuous, with Lipschitz constant 1

δ . To see this, we
will argue two particular cases; the rest follow similarly.

Case 1: (x1, y1) ∈ Fδ/2 and (x2, y2) ∈ Fδ/2

Suppose that (d× d) ((x1, y1), F ) ≤ (d× d) ((x2, y2), F ) (the other possibility
can be dealt with analogously). For any α > 0, there is some z ∈ F such that
(d×d) ((x1, y1), z) < (d×d) ((x1, y1), F ) + α. This implies that

(d×d) ((x2, y2), F ) ≤ (d×d) ((x2, y2), z)

≤ (d×d) ((x1, y1), (x2, y2)) + (d×d) ((x1, y1), z)

< (d×d) ((x1, y1), (x2, y2)) + (d×d) ((x1, y1), F ) + α

and it follows that

|f(x1, y1) − f(x2, y2)| =

∣

∣

∣

∣

[

2 −
1

δ
· (d×d) ((x1, y1), F )

]

−

[

2 −
1

δ
· (d×d) ((x2, y2), F )

]
∣

∣

∣

∣

=
1

δ
· (d×d) ((x2, y2), F ) −

1

δ
· (d×d) ((x1, y1), F )

<
1

δ
· (d×d) ((x1, y1), (x2, y2)) +

α

δ
.

This holds for any α > 0, so the claim follows.

Case 2: (x1, y1) ∈ Fδ/2 and (x2, y2) ∈ N ′

δ/2
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Given any α > 0, there is some z ∈ F and some w ∈ N ′ which satisfy

(d×d) ((x1, y1), z) < (d×d) ((x1, y1), F ) + α, and

(d×d) ((x2, y2), w) < (d×d) ((x2, y2), N
′) + α.

Then

(d×d) ((x1, y1), (x2, y2)) ≥ (d×d) (z, w) − (d×d) ((x1, y1), z) − (d×d) ((x2, y2), w)

> δ − (d×d) ((x1, y1), F ) − (d×d) ((x2, y2), N
′) − 2α

and so

|f(x1, y1) − f(x2, y2)| =

[

2 −
1

δ
· (d×d) ((x1, y1), F )

]

−

[

1 +
1

δ
· (d×d) ((x2, y2), N

′)

]

= 1 −
1

δ
· (d×d) ((x1, y1), F ) −

1

δ
· (d×d) ((x2, y2), N

′)

<
1

δ
· (d×d) ((x1, y1), (x2, y2)) +

2α

δ
.

This holds for any α > 0, so again the claim follows.

The other cases can be dealt with similarly.
Finally, we have that f ((∆X)ε′) = {1} for any ε′ ≤ ε, since (∆X)ε ⊆ N ′.

Therefore f satisfies properties (1) through (4) of Theorem 3.1. Thus we may apply
this theorem to obtain an equivalent metric ρ onX such that ρ agrees with f outside
of some small neighborhood of ∆X (which is contained in (∆X)ε, hence is disjoint
from F ), and ρ < 1 within this neighborhood. It follows that ρ(X × X) ⊆ [0, 2],
ρ(F ) = {2}, and ρ(N) ⊆ [0, 1]. �

4. Visualizing the Set T × T , for T a Simple Triod

Given a space X , it will be useful to have a practical but accurate way of visu-
alizing the product X ×X . The goal of this section is to explain the pictures that
will be used in later sections to describe the sets F and N required by Theorem
3.2.

If X is the unit interval I = [0, 1] or the circle S1, then we can easily visualize
X ×X in the plane as the square (with opposite sides identified in the case of the
circle).

We now extend this idea to the case ofX a simple triod. Let J = [0, 1]∪[2, 4] ⊂ R.
Note that X is homeomorphic to J/∼, where ∼ is the equivalence relation which
identifies the points 1 and 3 of J . Then we can view X × X as a subset of the
plane consisting of four rectangles as shown in Figure 1, where each point on the
right edges of the two rectangles on the left is identified with the point at the same
height in the middle of the rectangles on the right, and each point on the top edges
of the two rectangles at the bottom is identified with the point in the same vertical
line in the middle of the rectangles at the top.

In fact for any space X that can be written as a quotient of a bounded subset of
the real line, we can visualize X ×X as a quotient of a bounded subset of the real
plane in a straightforward way. In particular, any graph admits such a visualization.
See Section 7 for another example.



EQUIVALENT METRICS AND THE SPANS OF GRAPHS 5

S
1

S
1

p p

p

p

(a)

T

T

o o

o

o

(b)

Figure 1. (a) Standard visualization of the torus S1 × S1 in the
plane; (b) Analogous visualization of T×T as a quotient of a subset
of the plane, for T a simple triod
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5. Identifying Components of a Subset of T × T , for T a Simple Triod

When working with the spans of a space X (defined below), it is helpful to
be able to identify components of a subset of X × X . We will suppose that the
reader is comfortable working with connected sets in the ‘square with opposite
sides identified’ representation of the torus S1 × S1; one need only keep in mind
that connected sets can “wrap around” from the left edge of the square to the right,
and from the top to bottom. To be precise, a connected set in S1 × S1 consists of
a collection of connected (in the square) regions whose boundaries on the edge
of the square match up in pairs appropriately at opposite sides. Then given a set
Y ⊂ S

1×S
1, if we have a finite collection of clopen (in Y ) connected (in the square)

subsets of Y whose boundaries on the edge of the square match up in pairs, their
union is a component of Y .

A similar approach is effective for finding components of subsets of T ×T , where
T is a simple triod, using the visualization described in the previous section. The
following technical result validates the intuitive idea that we can identify a compo-
nent of a set Y ⊂ T × T by finding a finite collection of clopen (in Y ) connected
regions in the squares of our picture whose boundaries match up in triples in the
appropriate places.

Note that the following is merely a sufficient condition for K to be a component
of Y ⊂ T × T ; for less well-behaved subsets Y than what we will consider below,
there may be components which do not arise this way.

Proposition 5.1. Let T be a simple triod with legs A1, A2, A3 and branch point
o. Suppose Y ⊂ T × T , and let Yij = Y ∩ (Ai × Aj) for i, j = 1, 2, 3. Suppose
{Kij : i, j = 1, 2, 3} is a collection of nine sets such that Kij ⊆ Yij and at least one
of the sets Kij is nonempty.

Let K :=
⋃3

i,j=1Kij, and assume the following:

(1) K is connected,
(2) Kij is closed and open (i.e. clopen) in Yij for each i, j = 1, 2, 3,
(3) if (o, y) ∈ Kij (where y 6= o) then (o, y) ∈ K1j ∩K2j ∩K3j, and
(4) if (x, o) ∈ Kij (where x 6= o) then (x, o) ∈ Ki1 ∩Ki2 ∩Ki3.

Then K is a component of Y .

Proof. Observe that since arcs are closed, Ai × Aj is closed in T × T , hence Yij is
closed in Y . Furthermore, distinct sets Yi0j0 and Yi1j1 may intersect only in points
of the form (x, o) or (o, y).

Since each set Kij is a closed subset of Yij (by condition (2)), which is a closed

subset of Y , we have that Kij is closed in Y . This implies K =
⋃3

i,j=1Kij is closed
in Y .

Also, note that each set of the form Yij rKij is closed in Yij (since Kij is open

in Yij , again by condition (2)), so likewise we have that
⋃3

i,j=1(Yij rKij) is closed
in Y .

Since Y =
⋃3

i,j=1 Yij , it is clear that Y rK ⊆
⋃3

i,j=1(Yij rKij). For the reverse

inclusion, suppose that (x, y) ∈
⋃3

i,j=1(Yij r Kij), but (x, y) /∈ Y r K, that is,

(x, y) ∈ K.
If x 6= o and y 6= o, then there is a unique pair (i, j) such that (x, y) ∈ Yij , so we

must have (x, y) ∈ Yij rKij . But since (x, y) ∈ K, we must also have (x, y) ∈ Kij ,
which is a contradiction.
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If x = o and y 6= o, then there is exactly one j0 such that (o, y) ∈ Y1j0∩Y2j0∩Y3j0 ,
and (o, y) /∈ Yij whenever j 6= j0. Since (o, y) ∈ K, we must have (o, y) ∈ Kij0

for some i, which implies by condition (3) that (o, y) ∈ K1j0 ∩K2j0 ∩K3j0 . This

contradicts the fact that (x, y) = (o, y) ∈
⋃3

i,j=1(Yij rKij).

Likewise, if y = o and x 6= o, we arrive at a contradiction using condition (4).
If x = y = o, then it follows from condition (3) (applied once) and then condition
(4) (applied three times) that (o, o) ∈ Kij for each i, j, which again contradicts the

fact that (x, y) = (o, o) ∈
⋃3

i,j=1(Yij rKij).

Therefore we have that Y r K =
⋃3

i,j=1(Yij r Kij), which, as noted above, is
closed in Y . Hence K is open in Y .

Thus K is connected (by condition (1)) and clopen in Y , hence it is a component
of Y . �

6. Application to Span Theory

Let π1 and π2 denote the first and second coordinate projections, respectively,
of X ×X onto X ; that is, π1(x1, x2) = x1 and π2(x1, x2) = x2.

If (X, d) is a connected metric space, then define the surjective semispan of X ,
σ∗

0(X) (see [6]), to be

σ∗
0(X) = sup

Z∈Z

inf
(x1,x2)∈Z

d(x1, x2)

where Z is the family of subsets Z of X ×X with the following properties:

(1) Z is connected
(2) π1(Z) = X .

If we strengthen condition (2) to

(2′) π1(Z) = π2(Z) = X

then the value we obtain is called the surjective span of X , σ∗(X). If on top of this
we require the condition

(3) Z = Z−1

on Z, then the value we obtain is called the surjective symmetric span of X , s∗(X)
(see [3]).

Now we define the semispan, span, and symmetric span of X to be, respectively,

σ0(X) = sup{σ∗
0(Y ) : Y is a connected subset of X}

σ(X) = sup{σ∗(Y ) : Y is a connected subset of X}

s(X) = sup{s∗(Y ) : Y is a connected subset of X}.

Notice that the only connected proper subsets of a simple closed curve are arcs.
Since arcs have surjective semispan, span, and symmetric span all equal to zero
(see [6]), we have that σ0 = σ∗

0 , σ = σ∗, and s = s∗ for simple closed curves.
Suppose γ is a simple closed curve with metric d. Define the essential span of γ,

σe(γ) (see [1]), to be
σe(γ) = sup

f,g
inf

θ∈S1

d (f(θ), g(θ))

where f and g are degree one maps from S
1 to γ.

Remark. The original definition of the essential span given in [1] is restricted to
simple closed curves in the plane R2. There is no problem extending the definition
to arbitrary simple closed curves; however, the examples we consider below are not



8 L. C. HOEHN AND A. KARASEV

S
1

S
1

p p

p

p

Figure 2. Subsets F (thick black lines) and N (dashed lines) of
S

1 × S
1 for constructing a metric ρ on S

1 for which essential span
and symmetric span differ

planar, and so it remains an open question whether essential span can differ from
the other versions of span in the plane. In fact, it is still unknown for most pairs
of spans whether they can differ among continua in the plane.

For each of the examples below, the metric is constructed by using Theorem 3.2.
This means that each space has diameter equal to 2, and hence each version of span
takes a value ≤ 2.

Example 6.1. There exists a simple closed curve γ with σ(γ) = σe(γ) = 2 and
s(γ) = 1.

Proof. Let F and N be subsets of the torus S1 × S1 as shown in Figure 2, where
F is depicted by the thick black lines, and N is depicted by the dashed lines. It is
clear that F = F−1 and N = N−1, so we can apply Theorem 3.2 to obtain a metric
ρ on S

1 such that ρ(x, y) = 2 if (x, y) ∈ F , and ρ(x, y) ≤ 1 if (x, y) ∈ N . Denote
the metric space (S1, ρ) by γ.

Notice that F consists of two essential loops in γ × γ, and this implies that
σ(γ) = σe(γ) = 2.

Note also that (γ × γ) r N consists of two components, say, K1 and K2, and
K−1

1 = K2. In particular, K1 ∩K−1
1 = K2 ∩K

−1
2 = ∅. Thus if Z is a connected

subset of γ × γ such that Z = Z−1, then Z must meet N . It follows that s(γ) ≤ 1.
It is clear from the construction of the metric ρ in the proof of Theorem 3.2 that in
fact s(T ) = 1 (since ρ(x, y) ≥ 1 for all points (x, y) ∈ γ × γ except those in a small
neighborhood of the diagonal). �
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Figure 3. Subsets F (thick black lines) and N (dashed lines)
of S

1 × S
1 for constructing a metric ρ on S

1 for which span and
essential span differ

Remark. We can in fact find a simple closed curve γ in R
3 with the Euclidean

metric which (nearly) satisfies the properties of Example 6.1. Take γ to be the
boundary circle of the usual embedding of the Möbius strip in R3. Then if we
graph the Euclidean metric d : γ × γ → R, the resulting picture will have the form
of Figure 2, where the solid lines represent pairs of points that are far apart (say at
distance 1), and the dotted lines represent pairs of points which are closer than ε
to one another, where ε is the width of the strip. Thus for any ε > 0, we can find a
simple closed curve γ ⊂ R3 with the Euclidean metric such that σ(γ) = σe(γ) = 1
and s(γ) < ε.

Example 6.2. There exists a simple closed curve γ with σ(γ) = 2 and σe(γ) = 1.

Proof. Let F and N be subsets of the torus S1 × S1 as shown in Figure 3, where F
is depicted by the thick black lines, and N is depicted by the dashed lines. Again,
we have that F = F−1 and N = N−1, so we can apply Theorem 3.2 to obtain a
metric ρ on S1 such that ρ(x, y) = 2 if (x, y) ∈ F , and ρ(x, y) ≤ 1 if (x, y) ∈ N .
Denote the metric space (S1, ρ) by γ.

Note that F consists of two components, both of which have both first and
second coordinate projections equal to γ (since the “handles” in the corners overlap
horizontally and vertically). It follows that σ(γ) = 2.

Note also that (γ×γ)rN consists of two components, both of which are simply
connected. This implies that any essential loop in γ × γ must meet N . It follows
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Figure 4. Subsets F (thick black lines) and N (dashed lines)
of S

1 × S
1 for constructing a metric ρ on S

1 for which span and
semispan differ

that σe(γ) ≤ 1. Again, it is clear from the construction of the metric ρ in the proof
of Theorem 3.2 that in fact σe(γ) = 1. �

Example 6.3. There exists a simple closed curve γ with σ0(γ) = 2 and σ(γ) = 1.

Proof. Let F and N be subsets of the torus S1 × S1 as shown in Figure 4, where F
is depicted by the thick black lines, and N is depicted by the dashed lines. Again,
we have that F = F−1 and N = N−1, so we can apply Theorem 3.2 to obtain a
metric ρ on S1 such that ρ(x, y) = 2 if (x, y) ∈ F , and ρ(x, y) ≤ 1 if (x, y) ∈ N .
Denote the metric space (S1, ρ) by γ.

Note that F consists of two components, say F1 and F2, with F−1
1 = F2, where

π1(F1) = γ (and π2(F2) = γ). It follows that σ0(γ) = 2.
Note also that (γ × γ) r N consists of two components, say K1 and K2, with

K−1
1 = K2, where F1 ⊂ K1, F2 ⊂ K2. We have π2(K1) = γ r {q} and π1(K2) =

γ r {q} (where q is as shown in Figure 4). Hence if Z ⊂ γ × γ is a connected set
with π1(Z) = π2(Z) = γ, then we must have Z ∩N 6= ∅. This implies σ∗(γ) ≤ 1,
so σ(γ) ≤ 1. Again, it is clear from the construction of the metric ρ in the proof of
Theorem 3.2 that in fact σ(γ) = 1. �

Example 6.4. There exists a simple triod T with σ(T ) = 2 and s(T ) = 1.

Proof. Let F and N be subsets of T ×T as shown in Figure 5, where F is depicted
by the thick black lines, and N is depicted by the dashed lines. It is clear that
F = F−1 and N = N−1, so we can apply Theorem 3.2 to obtain a metric ρ on
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Figure 5. Subsets F (thick black lines) and N (dashed lines) of
T × T for constructing a metric ρ on the simple triod T for which
span and symmetric span differ

T such that ρ(x, y) = 2 if (x, y) ∈ F , and ρ(x, y) ≤ 1 if (x, y) ∈ N . We shall
henceforth refer to the metric space (T, ρ) simply as T .

It can readily be seen that F consists of two components, each of which has both
first and second coordinate projections equal to T . It follows that σ∗(T ) = 2, hence
σ(T ) = 2 (since the diameter of T is 2).

Using Proposition 5.1, one can verify that (T×T )rN consists of two components,
say, K1 and K2, with K−1

1 = K2. In particular, K1 ∩K
−1
1 = K2 ∩K

−1
2 = ∅. Thus

if Z is a connected subset of T × T such that Z = Z−1, then Z must meet N . It
follows that s(T ) ≤ 1. Once again, it is clear from the construction of the metric ρ
in the proof of Theorem 3.2 that in fact s(T ) = 1. �

Example 6.5. There exists a simple triod T with σ0(T ) = 2 and σ∗(T ) = 1.

Proof. Let F and N be subsets of T ×T as shown in Figure 6, where F is depicted
by the thick black lines, and N is depicted by the dashed lines. It is clear that
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A1 A2 A3

A1

A2

A3

o oq

o

o

q

Figure 6. Subsets F (thick black lines) and N (dashed lines) of
T × T for constructing a metric ρ on the simple triod T for which
surjective span and semispan differ

F = F−1 and N = N−1, so we can apply Theorem 3.2 to obtain a metric ρ on
T such that ρ(x, y) = 2 if (x, y) ∈ F , and ρ(x, y) ≤ 1 if (x, y) ∈ N . We shall
henceforth refer to the metric space (T, ρ) simply as T .

It can readily be seen that F consists of two components, say F1 and F2, with
F−1

1 = F2, where π1(F1) = T (and π2(F2) = T ). It follows that σ∗
0(T ) = 2, hence

σ0(T ) = 2.
Using Proposition 5.1, one can verify that (T×T )rN consists of two components,

sayK1 and K2, with K−1
1 = K2, where F1 ⊂ K1, F2 ⊂ K2. Once these components

have been ascertained, it can easily be seen that π2(K1) = γ r {q} and π1(K2) =
γ r {q} (where q is the endpoint of A2 which is distinct from o – see Figure 6).
Hence if Z ⊂ T ×T is a connected set with π1(Z) = π2(Z) = T , then we must have
Z ∩N 6= ∅. This implies σ∗(T ) ≤ 1. Again, it is clear from the construction of the
metric ρ in the proof of Theorem 3.2 that in fact σ∗(T ) = 1. �
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o

Figure 7. A simple triod in R3 for which surjective span and
semispan differ.

Remark. By looking at subtriods of the triod T of Example 6.5, it is not difficult
to see that in fact σ(T ) = 1.

7. Further Span Examples in R3

We begin by remarking that there exists a simple triod T in R3 with the property
that σ0(T ) = σ∗

0(T ) = 1 and σ(T ) = σ∗(T ) = 1
2 ; that is, with the same ratio as in

Example 6.5. The specifics of the construction of this triod may be gleaned from
Example 7.1 below, but for now we will omit the detail, and simply refer to Figure
7 to get some sense of the shape of it. In this picture, the positive x-axis points to
the right, the positive y-axis points away from the viewer, and the positive z-axis
points upward. Note that the lower leg and the right upper leg both lie entirely
in the xz-plane, and the third leg spirals around in the x and y directions while
simultaneously rising in the z direction.

We will not prove the above statements about the spans of this triod T , but the
same approach taken in Example 6.5 above will work here as well; one needs to find
appropriate subets F and N of ⊂ T × T so that pairs in F are at distance ≥ 1 and
points in N are at distance ≤ 1

2 (in the Euclidean metric), then proceed as above.

Next, given any δ > 0, we can embed a simple closed curve in R3 as follows:
start near (i.e. within δ

2 of) o, then travel along one leg of T to its tip, then back
near o, then along the next leg of T to its tip, then back near o, then along the third
leg of T to its tip, then back to the original starting point, all the while staying
within δ

2 of T and avoiding any unwanted self-intersections. One can verify that

the resulting simple closed curve γ is such that σ0(γ) > 1 − δ and σ(γ) < 1
2 + δ;

hence it nearly attains the same ratio as in Example 6.3.
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Now, it turns out that one can add an arc to this space γ to obtain the following
example, which answers negatively the question of whether σ0(X) ≤ 2σ∗

0(X) for all
continua X (see [6]).

Example 7.1. For any δ > 0, there exists a graph Γ in R3 (with the Euclidean
metric) such that σ0(Γ) > 1 − δ and σ∗

0(Γ) ≤ 1
4 + δ.

Proof. Define the maps αi : [0, 1] → R3 as follows:

α1(t) = (1 − t)
(

− 1
2 , 0,−1

)

+ t
(

− 1
2 , 0, 0

)

α2(t) = (1 − t)
(

− 1
2 , 0, 0

)

+ t (0, 0, 0)

α3(t) = (1 − t) (0, 0, 0) + t
(

1
8 , 0,

1
2

)

α4(t) = (1 − t)
(

1
8 , 0,

1
2

)

+ t (0, 0, 1)

α5(t) = α4(1 − t)

α6(t) = α3(1 − t)

α7(t) =































(

− 1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 0

)

if t ∈ [0, 3
10 ]

(

− 1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 1

2 cos(5tπ)
)

if t ∈ [ 3
10 ,

4
10 ]

(

− 1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 1

2

)

if t ∈ [ 4
10 ,

7
10 ]

(

− 1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 1

2 + 1
4 cos(5tπ)

)

if t ∈ [ 7
10 ,

8
10 ]

(

− 1
2 + 1

2 cos(5tπ), 1
2 sin(5tπ), 5

4 t−
1
4

)

if t ∈ [ 8
10 , 1]

α8(t) = α7(1 − t)

α9(t) = α2(1 − t)

α10(t) = α1(1 − t)

and define φ∗ : [0, 1] → R3 by

φ∗ = α1 ∗ α2 ∗ · · · ∗ α10.

Note that each αi is one to one, and φ∗(0) = φ∗(1) = (− 1
2 , 0,−1), so we may

regard φ∗ as a piecewise homeomorphism of the circle S1. Given any δ > 0, there
exists a continuous function φδ : [0, 1] → R3 such that φδ is one-to-one on [0, 1),
φδ(0) = φδ(1) (hence φδ ([0, 1]) is a simple closed curve), and d(φ∗(t), φδ(t)) <

δ
2

for all t ∈ [0, 1]. In other words, we can perturb the path in R3 defined by φ∗ by
an arbitrarily small amount to obtain an embedding of the circle S1. Let γδ be the
resulting simple closed curve; that is, γδ = φδ ([0, 1]).

Next, define the maps βi : [0, 1] → R
3 as follows (see Figure 8):

β1(t) = (1 − t)
(

− 1
2 , 0,−1

)

+ t
(

− 1
2 , 0, 0

)

β2(t) = (1 − t)
(

− 1
2 , 0, 0

)

+ t
(

− 1
4 , 0, 0

)

β3(t) =

{

(

− 1
2 + 1

4 cos(2tπ), 1
4 sin(2tπ), 0

)

if t ∈ [0, 3
4 ]

(

− 1
2 + 1

2 cos(2tπ), 1
4 sin(2tπ), 1

4 cos(2tπ)
)

if t ∈ [34 , 1]

β4(t) = (1 − t)
(

0, 0, 1
4

)

+ t
(

0, 0, 3
4

)

β5(t) = β4(1 − t)
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β1(0)

β4(1)

(a)

β6(0)

β7(1)

(b)

β13(0)

β14(1)

(c)

Figure 8. (a) Images of the maps βi against φ∗ ([0, 1]) (in gray),
for (a) i = 1, 2, 3, 4; (b) i = 6, 7; (c) i = 13, 14.

β6(t) =

{

(

− 1
2 + 1

2 cos(2tπ), 1
2 sin(2tπ), 1

4

)

if t ∈ [0, 3
4 ]

(

− 1
2 + 1

2 cos(2tπ), 1
2 sin(2tπ), 1

4 + 1
2 cos(2tπ)

)

if t ∈ [34 , 1]

β7(t) =
(

− 1
2 + 1

2 cos(tπ), 1
2 sin(tπ), 3

4

)

β8(t) = β7(1 − t)

β9(t) = β6(1 − t)

β10(t) = β5(1 − t)

β11(t) = β4(1 − t)

β12(t) = β3(1 − t)

β13(t) = (1 − t)
(

− 1
4 , 0, 0

)

+ t
(

0, 0, 1
2

)

β14(t) = (1 − t)
(

0, 0, 1
2

)

+ t (0, 0, 1)

and define ψ∗ : [0, 1] → R3 by

ψ∗ = β1 ∗ β2 ∗ · · · ∗ β14.

Let P be the “lollipop” figure obtained by taking the union of the unit circle S1

in the plane with the line segment joining the points (1, 0) and (2, 0). Denote the
point (1, 0) ∈ P by v.

Note that each function βi above is one to one, and ψ∗(0) = φ∗(0) = φ∗(1) =
(− 1

2 , 0,−1), so the combination of φ∗ and ψ∗ may be regarded as a piecewise home-

omorphism θ∗ of the space P into R3, taking v to the point v′ = (− 1
2 , 0,−1). Given

any δ > 0, there exists an embedding θδ : P → R3 such that d(θ∗(x), θδ(x)) <
δ
2

for all x ∈ P . Let Γδ = θδ(P ). We can ensure that θδ restricted the the circle in P
agrees with the embedding φδ, so that Γδ contains the simple closed curve γδ as a
subset.

Let the functions α′
i and β′

i be approximations of the maps αi and βi, respectively,
such that we can regard the function θδ restricted to the circle S1 ⊂ P as α′

1 ∗ α
′
2 ∗

· · · ∗ α′
10, and θδ restricted to the arc [1, 2] ⊂ P as β′

1 ∗ β
′
2 ∗ · · · ∗ β

′
14.
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We can show, using the following subsets of γδ × γδ, that σ∗
0(γδ) > 1 − δ. This

then implies that σ0(Γδ) > 1 − δ.

F1 =
(

φδ

(

[5860 , 1]
)

∪ φδ

(

[0, 3
6 ]

))

× {φδ(
5
6 )}

F2 = {φδ(
3
6 )} ×

(

φδ

(

[ 56 , 1]
)

∪ φδ

(

[0, 1
6 ]

))

F3 = φδ

(

[ 36 ,
42
60 ]

)

× {φδ(
1
6 )}

F4 = {φδ(
42
60 )} × φδ

(

[0, 1
6 ]

)

F5 = {
(

φδ(
42+t
60 ), φδ(1 − t

60 )
)

: t ∈ [0, 8]}

F6 = {
(

φδ(
50+t
60 ), φδ(

52+t
60 )

)

: t ∈ [0, 8]}

Let F =
⋃6

i=1 Fi. One can verify that the set F is connected, π1(F ) = γδ, and
d(x1, x2) > 1 − δ for all (x1, x2) ∈ F .

To show that σ∗
0(Γδ) <

1
4 + δ, we define the following subsets of Γδ × Γδ:

N1 = {(β′
1(t), α

′
1(t)) : t ∈ [0, 1]}

N2 = β′
2 ([0, 1]) × {α′

2(0)}

N3 = β′
3

(

[0, 3
4 ]

)

× {α′
2(0)}

N4 = {
(

β′
3(

3
4 + 1

4 t), α
′
2(cos[(3

2 + 1
2 )tπ])

)

: t ∈ [0, 1]}

N5 = {
(

β′
4(

1
2 t), α

′
3(t)

)

: t ∈ [0, 1]}

N6 = {
(

β′
4(

1
2 + 1

2 t), α
′
4(t)

)

: t ∈ [0, 1]}

N7 = {
(

β′
5(

1
2 t), α

′
5(t)

)

: t ∈ [0, 1]}

N8 = {
(

β′
5(

1
2 + 1

2 t), α
′
6(t)

)

: t ∈ [0, 1]}

N9 = {
(

β′
6(t), α

′
7(

4
10 t)

)

: t ∈ [0, 1]}

N10 = {
(

β′
7(t), α

′
7(

4
10 + 2

10 t)
)

: t ∈ [0, 1]}

N11 = {
(

β′
8(t), α

′
7(

6
10 − 2

10 t)
)

: t ∈ [0, 1]}

N12 = {
(

β′
9(t), α

′
7(

4
10 − 4

10 t)
)

: t ∈ [0, 1]}

N13 = {
(

β′
10(

1
2 t), α

′
6(1 − t)

)

: t ∈ [0, 1]}

N14 = {
(

β′
10(

1
2 + 1

2 t), α
′
5(1 − t)

)

: t ∈ [0, 1]}

N15 = {
(

β′
11(

1
2 t), α

′
4(1 − t)

)

: t ∈ [0, 1]}

N16 = {
(

β′
11(

1
2 + 1

2 t), α
′
3(1 − t)

)

: t ∈ [0, 1]}

N17 = {
(

β′
12(

1
4 t), α

′
2(cos[(3

2 + 1
2 )(1 − t)π])

)

: t ∈ [0, 1]}

N18 = β′
12

(

[ 14 , 1]
)

× {α′
2(0)}

N19 = {β′
12(1)} × α′

2 ([0, 1])

N20 = {(β′
13(t), α

′
3(t)) : t ∈ [0, 1]}

N21 = {(β′
14(t), α

′
4(t)) : t ∈ [0, 1]}

N22 = {(β′
14(1 − t), α′

5(t)) : t ∈ [0, 1]}

N23 = {(β′
13(1 − t), α′

6(t)) : t ∈ [0, 1]}

N24 = {
(

β′
12(1 − t), α′

7(
4
10 t)

)

: t ∈ [0, 1]}

N25 = β′
11 ([0, 1]) × {α′

7(
4
10 )}

N26 = β′
10 ([0, 1]) × {α′

7(
4
10 )}
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α′
1

α′
2

α′
3

α′
4

α′
5

α′
6

α′
7

α′
8

α′
9

α′
10

β′
1

β′
2

β′
3

β′
4

β′
5

β′
6

β′
7

β′
8

β′
9

β′
10

β′
11

β′
12

β′
13

β′
14

α′
1 α

′
2 α

′
3 α

′
4 α

′
5 α

′
6 α

′
7 α

′
8 α

′
9α

′
10 β

′
1 β

′
2 β

′
3 β

′
4 β

′
5 β

′
6 β

′
7 β

′
8 β

′
9 β

′
10β

′
11β

′
12β

′
13β

′
14

v′

v′

v′ v′

Figure 9. The space Γδ × Γδ with the subset N depicted with
dashed lines

N27 = {
(

β′
9(1 − t), α′

7(
4
10 + 4

10 t)
)

: t ∈ [0, 1]}

N28 = {
(

β′
8(1 − t), α′

7(
8
10 + 2

10 t)
)

: t ∈ [0, 1]}

N29 = {
(

β′
7(1 − t), α′

8(
2
10 t)

)

: t ∈ [0, 1]}

N30 = {
(

β′
6(1 − t), α′

8(
2
10 + 4

10 t)
)

: t ∈ [0, 1]}

N31 = β′
5 ([0, 1]) × {α′

8(
6
10 )}

N32 = β′
4 ([0, 1]) × {α′

8(
6
10 )}

N33 = {
(

β′
3(1 − t), α′

8(
6
10 + 4

10 t)
)

: t ∈ [0, 1]}

N34 = {(β′
2(1 − t), α′

9(t)) : t ∈ [0, 1]}

N35 = {(β′
1(1 − t), α′

10(t)) : t ∈ [0, 1]}

N36 = {(β′
i(t), β

′
i(t)) : t ∈ [0, 1], i = 1, . . . , 14}
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Let N =
⋃36

i=1Ni. Figure 9 depicts the set Γδ × Γδ as a subset of the plane in a
manner similar to that described in Section 4, with the set N drawn in with dashed
lines. Essentially, this picture is obtained as follows: starting with the set P (which
is homeomorphic to Γδ), we pluck one of the ends of the circle away from the point
v, so that we are left with an arc. We then “unroll and flatten” this arc to view it
as a subset of the real line R. This allows us to view P × P , and hence Γδ × Γδ, as
a subset of the plane R2.

One can check that d(x1, x2) <
1
4 + δ for all (x1, x2) ∈ N . One may also verify

(see Figure 9) that (Γδ ×Γδ) rN consists of two components, neither of which has
first coordinate projection equal to Γδ. This implies that if Z is a connected subset
of Γδ × Γδ with π1(Z) = Γδ, then Z must meet N . It follows that σ∗

0(Γδ) ≤
1
4 + δ.

�
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