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Abstract. For sufficiently tame paths in Rn, Euclidean length provides a

canonical parametrization of a path by length. In this paper we provide such
a parametrization for all continuous paths. This parametrization is based on

an alternative notion of path length, which we call len. Like Euclidean path

length, len is invariant under isometries of Rn, is monotone with respect to
sub-paths, and for any two points in Rn the straight line segment between

them has minimal len length.

Unlike Euclidean path length, the len length of any path is defined (i.e.,
finite) and len is continuous relative to the uniform distance between paths.

We use this notion to obtain characterizations of those families of paths which
can be reparameterized to be equicontinuous or compact. Finally, we use

this parametrization to obtain a canonical homeomorphism between certain

families of arcs.

1. Introduction

A path in Rn is a continuous function γ from a closed interval [a, b] ⊂ R to Rn.
Given z1, z2 ∈ Rn, denote by z1z2 the straight line segment path t 7→ (1−t)z1 +tz2,
t ∈ [0, 1].

Given a path γ : [a, b] → Rn, the Euclidean path length of γ, denoted LE(γ), is
defined by the formula

LE(γ) = sup

{
n∑
i=1

|γ(xi−1)− γ(xi))| : a = x0 < x1 < · · · < xn = b, n ∈ Z+

}
∈ [0,∞],

where |z1 − z2| denotes the Euclidean distance between points z1, z2 ∈ Rn.
If a sequence of smooth paths γi converges to γ∞ in C∞ (in the sense that the

paths γi and their derivatives γ′i converge uniformly to γ∞ and γ′∞, respectively),
then LE(γi) → LE(γ∞) and, hence, path length provides a canonical parameteri-
zation of this entire family. One of the main goals in this paper is to extend such
results to the topological category. For this reason we introduce a new notion of
path length which is defined for all paths and behaves well with respect to uniform
convergence of paths.
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The function L = LE satisfies the following basic properties for the path γ :
[a, b]→ Rn:

(L1) If A ⊂ [a, b] is a closed subinterval, then L(γ�A) ≤ L(γ);
(L2) If c ∈ (a, b), then L(γ) = L(γ�[a,c]) + L(γ�[c,b]);

(L3) If Φ : Rn → Rn is an isometry, then L(Φ ◦ γ) = L(γ);
(L4) L(γ) = the supremum, taken over all partitions a = x0 < x1 < · · · < xn = b

of [a, b], of the values L(P ) where P is the polygonal path with vertices
γ(x0), . . . , γ(xn);

and moreover, we have

(L5) L(0e) = 1, where e = (1, 0, . . . , 0) ∈ Rn.

Conversely, any function L defined on the set of all paths which satisfies the
properties (L1) through (L5) must be equal to LE (and any function L which
satisfies the properties (L1) through (L4) must be a scalar multiple c · LE of LE ,
where c = L(0e)). Indeed, one can use properties (L1), (L2), (L3), and (L5) to
show that L(ab) = b−a for any a, b ∈ R ⊂ Rn with a < b. Then by properties (L2)
and (L3) it follows that the length of any polygonal path is equal to the sum of
the (Euclidean) distances between consecutive vertices. We then conclude by (L4)
that L(γ) = LE(γ) for all paths γ.

There are a number of results in metric geometry pertaining to when a given
metric on a Euclidean space is equal to the Euclidean metric; [1], [3], and [8]
each survey a variety of such results. Much of this work is related to Hilbert’s
fourth problem. The length function introduced in this paper contributes to the
corresponding program for path length functions by illustrating that there are other
length functions which have many properties in common with the Euclidean length.

In light of the above discussion, to provide a genuinely different path length
function from the Euclidean length, one must give up at least one of the properties
(L1) through (L4). In Section 2, we define a path length function, called “len”,
such that L = len satisfies properties (L1), (L3), and (L4) (see Propositions 4(iii),
5(i), and 7 below), as well as the following weaker form of (L2) (see Proposition
5(ii)):

(L2′) If c ∈ (a, b), then L(γ) ≤ L(γ�[a,c]) + L(γ�[c,b]);

Furthermore, this length function has the following additional properties not
enjoyed by the Euclidean length LE :

• len(γ) < 1 for any path γ;
• len is continuous as a function from the space of all maps [0, 1]→ Rn (with

the uniform metric) to R.
• len is defined for any continuous function γ from a locally connected con-

tinuum X to Rn;

Moreover, this length function can differentiate between paths whose Euclidean
lengths are infinite. For instance, if γ : [a, b]→ Rn is a path and [c, d] is a subinterval
of [a, b] such that γ is non-constant on at least one component of [a, b]r [c, d], then
len(γ) > len(γ�[c,d]), even if both of these paths have infinite Euclidean length.

A very similar function is developed by Cannon et. al. in [4], which is called the
total oscillation of a path. The most notable difference is that the total oscillation
is not invariant under isometries of Rn.
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Another similar function is given by Morse in [9], called the µ-length, which is
defined for paths into any metric space.

After establishing the above properties in Section 3, we use len in Section 4 to
obtain a standard parameterization of all paths in Rn. This yields characterizations
of those families of paths which may be reparameterized so as to be equicontinuous
or compact. These results extends classical results on families of paths having finite
Euclidean length. In Section 5, we develop a second canonical parameterization of
all paths in Rn with all of the above properties, and which also commutes with a
reversal of orientation of a path. This second parameterization yields a canonical
extension of a bijection between the endpoint sets of two arcs to a homeomorphism
between the two arcs. We use this notion to construct homeomorphisms between
certain families of pairwise disjoint arcs in Theorem 16.

The results of this paper have already been used in two other papers. In [11] it
was shown that any isotopy of a planar continuum can be extended to an isotopy of
the entire plane. Using Theorems 16 and 17, this result is extended in [6] to a more
general class of planar compacta. It was shown in [2] that any two points in a closed
topological disk D in the plane can be connected by a unique arc A in D which
has the property that any subarc of A which connects two points, neither of which
is an endpoint of A, has minimal (finite) Euclidean length among all such arcs. In
[7] this result is generalized to shortest paths (in the sense of len length, and in the
above Euclidean sense for proper subpaths) in the closure of any homotopy class in
an open connected subset of the plane with arbitrary boundary.

2. Definition of the function len

A generalized path is a continuous function γ : X → Rn, where X is a locally
connected metric continuum.

Given n ≥ 2, there is a length function lenn defined for generalized paths X →
Rn. In this paper, to simplify the definition and arguments below, we restrict our
attention to the case n = 2, and give a definition of len = len2. The case n > 2
proceeds similarly; the primary differences being that we cut by (n−1)-dimensional
hyperplanes instead of lines (see below), and the parameter t below varies through
the (n − 1)-dimensional real projective space instead of [0, 1] (which we use to
parameterize the semi-circle {etπi : t ∈ [0, 1]}).

The reader may find it easier to work through this construction for an ordinary
path γ : [a, b]→ C instead of a generalized path, on a first reading.

For notational convenience, we will identify R2 with C.

For j ∈ Z, let Sj denote the closed horizontal strip {a+ ib : a ∈ R, b ∈ [j, j + 1]}
in the plane C. Given x, t ∈ [0, 1], µ ∈ (0, 1], and j ∈ Z, let Sx,t,µj = µetπi(Sj + ix).

If A ⊂ C, define ‖A‖t = diam(proj⊥t (A)), where proj⊥t denotes the orthogonal

projection of C onto the line {re(t+ 1
2 )πi : r ∈ R} and diam denotes the diameter in

the Euclidean metric.
Fix a generalized path γ : X → C.
The following lemma will be used in the definition of the function len below.

Lemma 1. For any (x, t, µ) ∈ [0, 1] × [0, 1] × (0, 1] and any ε > 0, there are only

finitely many components C of the sets γ−1(Sx,t,µj ) (j ∈ Z) with ‖γ(C)‖t ≥ ε.
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Proof. We may assume that ε ≤ µ
2 . Suppose for a contradiction that there are

infinitely many distinct components {Cn}∞n=0 of the sets γ−1(Sx,t,µj ) (j ∈ Z) with

‖γ(C)‖t ≥ ε.
For each n let j(n) ∈ Z be the integer for which γ(Cn) ⊂ Sx,t,µj(n) , and let pn ∈ Cn

be such that d(γ(pn), ∂Sx,t,µj(n) ) = ε, where d denotes the Euclidean metric in Rn.

Observe that by local connectivity of X, for each n we have γ(∂Cn) ⊂ ∂Sx,t,µj(n) .

Let p ∈ X be an accumulation point of the set {pn}∞n=0, and let U be an open
neighborhood of p which is small enough so that diam(γ(U)) < ε. Then for any

n such that pn ∈ U , we have γ(U) ∩ ∂Sx,t,µj(n) = ∅, hence U ∩ ∂Cn = ∅, and so

U ∩Cn is closed and open in U . It follows that U cannot be connected, which is a
contradiction since X is locally connected. �

Given x, t ∈ [0, 1] and µ ∈ (0, 1], let 〈Cx,t,µn 〉∞n=0 enumerate the collection of all

components of the sets γ−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image under

the map proj⊥t , ordered so that ‖γ(Cx,t,µn )‖t ≥ ‖γ(Cx,t,µn+1 )‖t for all n (this is possible
by Lemma 1).

Define

Lx,t,µ(γ) =

∞∑
n=0

‖γ(Cx,t,µn )‖t
2n

and define the length of γ by

len(γ) =

∫ 1

0

∫ 1

0

∫ 1

0

Lx,t,µ(γ) dx dt dµ.

If X ⊂ C is a locally connected continuum, define len(X) = len(idX).
Observe that if σ is any injective function of the non-negative integers to them-

selves, then

(∗)
∞∑
n=0

‖γ(Cx,t,µσ(n) )‖t
2n

≤ Lx,t,µ(γ).

It remains to show that the function Lx,t,µ(γ) is in fact integrable, so that the
above definition of the function len makes sense. This is accomplished in Lemma 3
below.

Lemma 2. Let C be a component of γ−1(Sx,t,µj ) for some x, t, µ, j which has non-

degenerate image under the map proj⊥t , and let ε > 0. Then there exists a subcon-

tinuum D ⊂ C such that γ(D) ⊂ int(Sx,t,µj ) and ‖γ(D)‖t ≥ ‖γ(C)‖t − ε.

Proof. For the purposes of this argument, let us naturally identify R with the
rotated line {re(t+ 1

2 )πi : r ∈ R} which is the range of the map proj⊥t .

Let s1, s2 ∈ R be such that s1 < s2 and proj⊥t (γ(C)) = [s1, s2] (and hence
‖γ(C)‖t = s2 − s1). We may assume that ε < s2−s1

2 . Let S′ denote the narrower

(closed) strip (proj⊥t )−1([s1 + ε
2 , s2− ε

2 ]) ⊂ int(Sx,t,µj ). Then C∩γ−1(S′) must have

a component D such that proj⊥t (γ(D)) = [s1 + ε
2 , s2 − ε

2 ] (see e.g. Theorem 5.2 of
[10]). This D is as desired. �

A real-valued function f is lower semicontinuous if f−1((α,∞)) is open for every
α ∈ R. Note that a lower semicontinuous function is Borel, hence (Lebesgue)
integrable.
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Lemma 3. For a fixed generalized path γ : X → C, put L(x, t, µ) = Lx,t,µ(γ).
Then the function L(x, t, µ) from [0, 1]× [0, 1]× (0, 1] to R is lower semicontinuous,
hence integrable.

Proof. Fix a number α ∈ R, and suppose Lx,t,µ(γ) > α. Choose N large enough so

that
∑N
n=0

‖γ(Cx,t,µn )‖t
2n > α.

For each n ∈ {0, 1, . . . , N} let j(n) be such that Cx,t,µn is a component of

γ−1(Sx,t,µj(n) ). Then, by Lemma 2, for each n we can find a proper subcontinuum

Dn ⊂ Cx,t,µn such that γ(Dn) is contained in the interior of Sx,t,µj(n) , and so that

N∑
n=0

‖γ(Dn)‖t
2n

> α.

Let ε1 > 0 be small enough so that if |x′ − x|, |t′ − t|, |µ′ − µ| < ε1, then

γ(Dn) ⊂ Sx
′,t′,µ′

j(n) for each n ∈ {0, 1, . . . , N}, and moreover

(1)

N∑
n=0

‖γ(Dn)‖t′
2n

> α.

For each pair of numbers n1 < n2 in {0, 1, . . . , N} with j(n1) = j(n2), find
an open set An1,n2

⊂ X such that Cx,t,µn1
⊂ An1,n2

⊂ An1,n2
⊂ X r Cx,t,µn2

and

∂An1,n2
∩ γ−1(Sx,t,µj(n1)) = ∅; that is, γ(∂An1,n2

) ∩ Sx,t,µj(n1) = ∅.
Let 0 < ε2 < ε1 be small enough so that if |x′ − x|, |t′ − t|, |µ′ − µ| < ε2, then

γ(∂An1,n2
) ∩ Sx

′,t′,µ′

j(n1) = ∅ for every pair of numbers n1 < n2 in {0, 1, . . . , N} with

j(n1) = j(n2). Since ∂An1,n2 separates Dn1 from Dn2 in X, it follows that Dn1

and Dn2 are contained in distinct components of γ−1(Sx
′,t′,µ′

j(n1) ). Therefore, for such

x′, t′, µ′, by (∗) and (1) we have

Lx
′,t′,µ′

(γ) ≥
N∑
n=0

‖γ(Dn)‖t′
2n

> α.

Thus, the set {(x, t, µ) : Lx,t,µ(γ) > α} is open in [0, 1] × [0, 1] × (0, 1], and so
L(x, t, µ) is a lower semicontinuous function. �

Thus the function len is well-defined. Observe that the set γ(Cx,t,µn ) is con-

tained in some strip Sx,t,µj having width µ, hence ‖γ(Cx,t,µn )‖t ≤ µ. It follows that

Lx,t,µ(γ) < 2µ, and therefore len(γ) < 1.

It can easily be seen that len(0x) → 1 as x → ∞, x ∈ R. It follows from
Propositions 4(iii) and 6 below that if γm : Xm → C, m ∈ N is a sequence of
generalized paths such that diam(γm(Xm))→∞ as m→∞, then len(γm)→ 1 as
m→∞.

On the other hand, if we define γm : [0, 1] → C by γm(t) = e2πimt, then
len(γm)→ 1 as m→∞, even though diam(γm([0, 1])) = 2 for all m.

3. Properties of the function len

Let n ≥ 2 be fixed. All results in this section will be stated for len = lenn, and
proofs will be given for the case n = 2.

The following basic properties follow immediately from the definition of the
function len.
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Proposition 4. Let γ : X → Rn be a generalized path.

(i) len(γ) = 0 if and only if γ is a constant function.
(ii) If h : Y → X is a homeomorphism, then len(γ ◦ h) = len(γ).

(iii) If Φ : Rn → Rn is an isometry, then len(Φ ◦ γ) = len(γ).

For the next properties, we need to consider a more restricted class of locally
connected continua, namely dendrites. A dendrite is a locally connected continuum
which contains no simple closed curve. A characteristic feature of dendrites is that
they are hereditarily unicoherent; that is, given any two intersecting subcontinua
A and B of a dendrite X, the intersection A ∩ B is connected. See Section 6 for
examples to illustrate how these properties can fail when the domain of a generalized
path is not a dendrite.

Proposition 5. Let X be a dendrite, and let γ : X → Rn be a generalized path.

(i) If A is a subcontinuum of X, then len(γ�A) ≤ len(γ). Moreover, len(γ�A) =
len(γ) if and only if γ is constant on each component of X rA.

(ii) If A,B are subcontinua of X with A ∪B = X, then

len(γ) ≤ len(γ�A) + len(γ�B).

Proof. We treat the case n = 2.
Fix x, t, µ, and for convenience denote Sx,t,µj and Cx,t,µn (defined as in Section 2)

simply by Sj and Cn, respectively.
Let A ⊆ X be a subcontinuum. Given j ∈ Z and a component C of (γ�A)−1(Sj),

there exists some n such that C ⊆ Cn. Since Cn ∩ A is connected (by hereditary
unicoherence), it follows that C = Cn ∩A.

Therefore there exists an injective function σ from the non-negative integers to
themselves such that 〈Cσ(n) ∩A〉

∞
n=0

enumerates the collection of all components of

the sets (γ�A)−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image under the map

proj⊥t , so that ‖γ(Cσ(n) ∩A)‖t ≥ ‖γ(Cσ(n+1) ∩A)‖t for all n. Then

Lx,t,µ(γ�A) =

∞∑
n=0

‖γ(Cσ(n) ∩A)‖t
2n

≤
∞∑
n=0

‖γ(Cσ(n))‖t
2n

≤ Lx,t,µ(γ) (by the observation (∗)).

Since this holds for all x, t, µ, we have established the first statement of (i).
For the second statement of (i), suppose γ is non-constant on some component K

of XrA. The intersection K∩A consists of a single point (see e.g. 10.9 and 10.24 of
[10]). Let {p} = K ∩A, and let q ∈ K be such that γ(p) 6= γ(q). There is a positive

measure set of parameters x, t, µ and an integer j ∈ Z for which γ(q) ∈ int(Sx,t,µj )

and γ(p) /∈ Sx,t,µj . For such x, t, µ, j, there is a component of γ−1(Sx,t,µj ) contained

in K, which contributes positively to the sum Lx,t,µ(γ), thereby making it larger
than Lx,t,µ(γ�A). It follows that len(γ) > len(γ�A). The converse implication is
immediate.

Now suppose A,B ⊆ X are subcontinua with A ∪ B = X. As above, for any
j ∈ Z, each component of (γ�A)−1(Sj) (respectively (γ�B)−1(Sj)) has the form
Cn ∩A (respectively Cn ∩B) for some n.
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Let 〈n(α)〉∞α=0 and 〈m(β)〉∞β=0 be the strictly increasing sequences of non-negative

integers such that 〈Cn(α) ∩A〉
∞
α=0

enumerates the collection of all components of

the sets (γ�A)−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image under the map

proj⊥t ◦ γ, and 〈Cm(β) ∩B〉
∞
β=0

enumerates the collection of all components of the

sets (γ�B)−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image under the map

proj⊥t ◦ γ. Note that these enumerations are not necessarily ordered according to

the sizes of the images under proj⊥t ◦ γ.
For any n, we clearly have ‖γ(Cn)‖t ≤ ‖γ(Cn ∩A)‖t + ‖γ(Cn ∩B)‖t. Therefore

Lx,t,µ(γ) =

∞∑
n=0

‖γ(Cn)‖t
2n

≤
∞∑
n=0

‖γ(Cn ∩A)‖t
2n

+

∞∑
n=0

‖γ(Cn ∩B)‖t
2n

=

∞∑
α=0

‖γ(Cn(α) ∩A)‖t
2n(α)

+

∞∑
β=0

‖γ(Cm(β) ∩B)‖t
2m(β)

≤
∞∑
α=0

‖γ(Cn(α) ∩A)‖t
2α

+

∞∑
β=0

‖γ(Cm(β) ∩B)‖t
2β

(since α ≤ n(α), β ≤ m(β))

≤ Lx,t,µ(γ�A) + Lx,t,µ(γ�B) (by the observation (∗)).
Since this holds for all x, t, µ, we have established (ii). �

Proposition 6. Let z1, z2 ∈ Rn. If γ : X → Rn is any generalized path such that
z1, z2 ∈ γ(X), then len(z1z2) ≤ len(γ). Moreover, if γ(X) is not the straight line
segment joining z1 and z2, or if γ−1(w) is disconnected for some w on the straight
line segment between z1 and z2, then len(z1z2) < len(γ).

Proposition 6 can be proved directly from the definition of the function len, and
we leave this to the reader. Note that it also follows that if in a path γ : [0, 1]→ Rn
we replace the subpath γ�[a,b] with the straight line segment γ(a)γ(b) and if we

denote the resulting path by γ∗, then len(γ∗) ≤ len(γ) with strict inequality if

γ�[a,b] is not a monotone parametrization of the straight line segment γ(a)γ(b).

Next we consider C(X) = C(X,Rn), the set of all generalized paths X → Rn.
This is a metric space with the usual metric dsup(γ1, γ2) = supp∈X |γ1(p)− γ2(p)|.

Proposition 7. The function len : C(X)→ Rn is continuous.

Proof. We treat the case n = 2. Let γ0 be in C(X).
Suppose α < len(γ0) < β. We will prove that for small enough ξ > 0, if γ ∈ C(X)

with dsup(γ, γ0) < ξ, then α < len(γ0) < β.
A simple modification of the proof of Lemma 3 shows that for ξ > 0 small

enough, if dsup(γ, γ0) < ξ then len(γ) > α. Thus it remains to show len(γ) < β for
sufficiently small ξ > 0.

Fix a countable dense set {qk}∞k=1 ⊂ X. Given k 6= l and j ∈ Z, let

Bjkl ={(x, t, µ) ∈ [0, 1]× [0, 1]× (0, 1] :

there is a continuum C ⊆ γ−1
0 (Sx,t,µj ) with qk, ql ∈ C and

for every such C we have γ0(C) ∩ ∂Sx,t,µj 6= ∅}
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and let B =
⋃
k 6=l
j∈Z

Bjkl. It is easy to see that ([0, 1] × [0, 1] × (0, 1]) r Bjkl is open,

and so B is Fσ, hence measurable.

Claim 7.1. B has measure zero.

Proof of Claim 7.1. Fix k 6= l and j ∈ Z. It will be convenient to change variables
from (x, t, µ) to (z, t, µ) so that for any fixed rotation angle t and translation pa-
rameter z, as the strip width µ shrinks, the j-th strip itself shrinks inwards, nesting
down on a line.

Given (x, t, µ) ∈ [0, 1]× [0, 1]× (0, 1], let z = µ(x+ 1
2 + j) ∈ (−∞,∞), and define

Φ(x, t, µ) = (z, t, µ).
Observe that for (z, t, µ) in the image of Φ, Φ−1(z, t, µ) = ( zµ −

1
2 − j, t, µ). Thus

Φ(Bjkl) is contained in the set

B′ ={(z, t, µ) : there is a continuum C ⊆ γ−1
0 (T z,t,µ) with qk, ql ∈ C and

for every such C we have γ0(C) ∩ ∂T z,t,µ 6= ∅}

where T z,t,µ = µetπi(Sj + i( zµ −
1
2 − j)) = etπi(µ(Sj − 1

2 i− ji) + iz). Observe that

the strip T z,t,µ is centered about the line etπi(R+ iz), and if µ′ < µ, then T z,t,µ
′

is
contained in the interior of T z,t,µ. Thus for any fixed z, t, there can be at most one
µ for which (z, t, µ) ∈ B′. By Fubini’s theorem, this implies B′ has measure zero.

Since Φ(Bjkl) ⊆ B′, we have that Φ(Bjkl) has measure zero as well.
A straightforward calculation shows that Φ is a C1-diffeomorphism on [0, 1] ×

[0, 1]× (0, 1] with Jacobian equal to µ. Thus by the change of variables theorem [5,

Theorem 2.47], the measure of Φ(Bjkl) is equal to∫∫∫
Bjkl

µdx dt dµ.

Since µ > 0 and Φ(Bjkl) has measure zero, it follows that Bjkl has measure zero as

well. Since B =
⋃
k 6=l
j∈Z

Bjkl, the Claim follows. �(Claim 7.1)

Claim 7.2. Given (x0, t0, µ0) ∈ ([0, 1]× [0, 1]× (0, 1]) rB and ε > 0, there exists
δ > 0 and ξ0 > 0 such that if |x − x0| < δ, |t − t0| < δ, |µ − µ0| < δ, and
dsup(γ, γ0) < ξ0, then Lx,t,µ(γ) < Lx0,t0,µ0(γ0) + ε.

Proof of Claim 7.2. For j ∈ Z, let S′j denote the narrower (closed) strip obtained

from Sx0,t0,µ0

j by moving the boundary lines in towards the middle a distance of ε
20

each.
Let 〈Cn〉∞n=0 enumerate the collection of all components of the sets γ−1

0 (Sx0,t0,µ0

j )

(j ∈ Z) which have non-degenerate image under the map proj⊥t , ordered so that
‖γ0(Cn)‖t0 ≥ ‖γ0(Cn+1)‖t0 for all n. For each n, let j(n) be the integer such

that γ0(Cn) ⊂ Sx0,t0,µ0

j(n) . By Lemma 1, there are only finitely many components

C0, . . . , CN such that γ0(Cn) meets the narrower strip S′j(n), for 0 ≤ n ≤ N .

Fix some n with 0 ≤ n ≤ N . Let U1, . . . , Ur be a finite cover of Cn ∩ γ−1
0 (S′j(n))

by connected open subsets of X whose closures are mapped by γ0 into the interior
of Sx0,t0,µ0

j(n) . Let k be such that qk ∈ U1, and for each 2 ≤ i ≤ r let l(i) be such

that ql(i) ∈ Ui. Then for each 2 ≤ i ≤ r, since (x0, t0, µ0) /∈ B
j(n)
k l(i) and Cn is a
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continuum in γ−1
0 (Sx0,t0,µ0

j(n) ) containing qk and ql(i), there exists a continuum Ki

containing qk and ql(i) which is mapped by γ0 into the interior of the strip Sx0,t0,µ0

j(n) .

Let C ′n = U1 ∪
⋃

2≤i≤r(Ui ∪Ki). Then C ′n is a continuum which is mapped by γ0

into the interior of the strip Sx0,t0,µ0

j(n) and such that Cn ∩ γ−1
0 (S′j) ⊆ C ′n ⊂ Cn.

Having done this for each 0 ≤ n ≤ N , let δ > 0 be small enough and let ξ0 > 0 be
small enough so that if |x− x0| < δ, |t− t0| < δ, |µ− µ0| < δ, and dsup(γ, γ0) < ξ0,
then for each 0 ≤ n ≤ N we have:

(i) γ(C ′n) is contained in the interior of the strip Sx,t,µj(n) ,

(ii) ‖γ(C ′n)‖t < ‖γ0(C ′n)‖t0 + ε
4 , and

(iii) if A ⊂ X with γ0(A) contained in between two consecutive narrowed strips
S′j and S′j+1, then ‖γ(A)‖t < ε

8 .

Note that if 0 ≤ n ≤ N and if C is the component of γ−1(Sx,t,µj(n) ) containing C ′n,

then C consists of C ′n plus some part which γ0 maps in between S′j(n) and S′j(n)−1,

and some part which γ0 maps in between S′j(n) and S′j(n)+1. Therefore, by (ii) and

(iii) we have

‖γ(C)‖t < ‖γ0(C ′n)‖t0 + ε
4 + 2 · ε8 = ‖γ0(C ′n)‖t0 + ε

2 .

Every other component C̃ of γ−1(Sx,t,µj ) satisfies ‖γ(C̃)‖t < ε
8 by (iii). It follows

that

Lx,t,µ(γ) <

N∑
n=0

‖γ0(C ′n)‖t0 + ε
2

2n
+

∞∑
n=N+1

ε/8

2n

<

N∑
n=0

‖γ0(C ′n)‖t0
2n

+ ε

≤ Lx0,t0,µ0(γ0) + ε.

�(Claim 7.2)

We are now ready to show that len(γ) < β for γ sufficiently close to γ0.

Recalling that Lx,t,µ(γ0) < 2µ ≤ 2, choose a step function ψ = 2−
∑k
i=0 ci χAi ,

where the Ai ⊂ [0, 1] × [0, 1] × (0, 1] are pairwise disjoint compact sets and χAi is
the characteristic function of the set Ai, with

Lx,t,µ(γ0) ≤ ψ(x, t, µ) for all x, t, µ

and ∫ 1

0

∫ 1

0

∫ 1

0

ψ(x, t, µ) dx dt dµ < β.

Let η = β −
∫ 1

0

∫ 1

0

∫ 1

0
ψ dx dt dµ > 0. By Claim 7.1, we can find a compact set

Ω ⊂ ([0, 1]× [0, 1]× (0, 1]) rB of measure ≥ 1− η
4 .

Using Claim 7.2 and compactness of the sets Ai∩Ω, we can find ξi small enough
so that if dsup(γ, γ0) < ξi, then Lx,t,µ(γ) < ψ(x, t, µ) + η

4 for all (x, t, µ) ∈ Ai ∩ Ω.
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Letting ξ = mini ξi, it follows that if dsup(γ, γ0) < ξ, then

len(γ) =

∫ 1

0

∫ 1

0

∫ 1

0

Lx,t,µ(γ) dx dt dµ

≤
∫∫∫

Ω

Lx,t,µ(γ) dx dt dµ+ 2 · η4

≤
∫∫∫

Ω

(
ψ(x, t, µ) + η

4

)
dx dt dµ+ 2 · η4

≤ (β − η) + η
4 + 2 · η4

< β.

�

It follows from Proposition 7 that for any path γ0 and any ε > 0, there exists
δ > 0 such that if dsup(γ, γ0) < δ, then |len(γ�[0,t])−len(γ0�[0,t])| < ε for all t ∈ [0, 1].

To see this, note that by Proposition 7, for any t0 ∈ [0, 1], there is a small open
interval J0 around t0 and δ0 > 0 small enough such that if dsup(γ, γ0) < δ0, then
|len(γ�[0,t]) − len(γ0�[0,t0])| < ε

2 for any t ∈ J0. Take a finite cover of [0, 1] by
such intervals J0 and take δ to be the minimum of the corresponding numbers δ0.
Suppose dsup(γ, γ0) < δ. Given any t ∈ [0, 1], take one of the intervals J0 from the
cover such that t ∈ J0. Then we have

|len(γ�[0,t])− len(γ0�[0,t])| ≤ |len(γ�[0,t])− len(γ0�[0,t0])|+ |len(γ0�[0,t])− len(γ0�[0,t0])|

<
ε

2
+
ε

2
= ε.

A consequence of Proposition 7 is that for a path γ : [a, b]→ Rn, len(γ) is small if
and only if diam(γ([a, b])) is small. This will suffice for our purposes, but in fact one
can argue from the definition of len = lenn that there are constants c1(n), c2(n) > 0
such that:

(∗∗): If γ : [a, b]→ Rn is a path with diam(γ([a, b])) ≤ 1
2 , then

c1(n) · diam(γ([a, b])) ≤ lenn(γ) ≤ c2(n) · diam(γ([a, b])).

4. Parameterization by len

Let n ≥ 2 be fixed. As before, all results in this section will be stated for
len = lenn, and proofs will be given for the case n = 2.

In this section, we work with C[0, 1] = C([0, 1],Rn), the set of all paths γ : [0, 1]→
Rn. This is a metric space with the usual metric dsup(γ1, γ2) = supt∈[0,1] |γ1(t) −
γ2(t)|.

Definition 8. Given two paths γ1, γ2 : [0, 1] → Rn, we say that γ2 is a repa-
rameterization of γ1 if there are non-decreasing onto maps m1,m2 : [0, 1] → [0, 1]
such that γi is constant on each fiber m−1

i (s), s ∈ [0, 1], for both i = 1, 2, and

γ1 ◦m−1
1 = γ2 ◦m−1

2 . In this case, we write γ1 ≈ γ2.

Thus γ1 ≈ γ2 if they both parameterize the same path, with the same orientation,
where we disregard any constant sections. Note that if γ1 ≈ γ2, then len(γ1) =
len(γ2). It is easy to see that ≈ is an equivalence relation on C[0, 1]. Denote by [γ]
the equivalence class of γ with respect to ≈.
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Let Π denote the collection of all equivalence classes [γ]. We define a metric ρ
on Π as follows:

ρ([γ1], [γ2]) = inf{ sup
t∈[0,1]

|λ1(t)− λ2(t)| : λ1 ∈ [γ1], λ2 ∈ [γ2]}.

In fact, by reparameterizing, this can be expressed as ρ([γ1], [γ2]) = inf{supt∈[0,1] |λ1(t)−
γ2(t)| : λ1 ∈ [γ1]}. It is easy to show that ρ is a metric, and that the resultant
metric topology on Π coincides with the quotient topology induced from C[0, 1].

One can deduce from Propositions 5(i) and 7 that given a path γ : [0, 1] →
Rn, the function [0, 1] → [0, 1) defined by t 7→ len(γ�[0,t]) is continuous and non-
decreasing. As a result, we can make the following definition:

Definition 9. The standard parameterization γ̃ : [0, 1] → Rn of γ, also called the
parameterization of γ by len, is defined as follows. If γ is constant, then γ̃ = γ.
Otherwise, given s ∈ [0, 1], γ̃(s) = γ(t), where t ∈ [0, 1] is such that len(γ�[0,t]) =

s · len(γ).

Note that this value t may not be unique, but by Proposition 5(i), the point
γ(t) is uniquely determined by s. One can easily check that γ̃ is a path (i.e. is a
continuous function), γ̃ ≈ γ, and len(γ̃�[0,s]) = s · len(γ) for any s ∈ [0, 1]. However,

note that in general len(γ̃�[s1,s2]) 6= (s2 − s1)len(γ) when 0 < s1 < s2 ≤ 1.
For the Euclidean path length, such a parameterization is only available for

rectifiable paths, i.e. those paths with finite Euclidean length.

Observe that the standard parameterization is unique within each equivalence
class of paths, in the sense that if γ1 ≈ γ2, then γ̃1 = γ̃2.

Consider the standard parameterization as a function Π → C[0, 1] which maps

each class [γ] to the unique standard parameterization γ̃ ∈ [γ]. Denote by Π̃ the

range of this function; that is, Π̃ is the set of all standard parameterizations of
paths [0, 1]→ Rn.

Theorem 10. Π̃ is a closed subset of C[0, 1], and the function [γ] 7→ γ̃ is a home-

omorphism from Π to Π̃.

Proof. Suppose γ ∈ C[0, 1] r Π̃, which means that len(γ�[0,s]) 6= s · len(γ) for some

s ∈ [0, 1]. Then for all λ ∈ C[0, 1] which are uniformly close to γ, we have that
λ�[0,s] is uniformly close to γ�[0,s] as well, hence by Proposition 7 we have that

len(λ) and len(λ�[0,s]) are close to len(γ) and len(γ�[0,s]), respectively. It follows

that len(λ�[0,s]) 6= s · len(λ) if λ is sufficiently close to γ, hence λ /∈ Π̃. Thus

C[0, 1] r Π̃ is open, and so Π̃ is closed.
It is clear that [γ] 7→ γ̃ is one-to-one, and that the inverse of this map is con-

tinuous, by definition of the metric ρ on Π (indeed the map γ̃ 7→ [γ̃] is Lipschitz
continuous with constant 1).

To see that [γ] 7→ γ̃ is continuous, suppose [γi] is a sequence in Π converging to
[γ∞] ∈ Π (in the metric ρ on Π). By changing representatives if necessary, we may
assume that γi → γ∞ uniformly. By Proposition 7 (and the statements immediately
after), it follows that for every ε > 0 there exists n0 such that for all i ≥ n0 and all
t ∈ [0, 1], |len(γi�[0,t])− len(γ∞�[0,t])| < ε.

Fix ε > 0. Let δ > 0 be small enough so that for all i ≥ 1 and all t1, t2 ∈ [0, 1],
if |len(γi�[0,t1]) − len(γi�[0,t2])| < δ then diam(γi([t1, t2])) < ε

2 . Let n0 be large
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enough so that for all i ≥ n0 and t ∈ [0, t], |len(γi�[0,t]) − len(γ∞�[0,t])| < δ
2 and

|γi(t)− γ∞(t)| < ε
2 .

Given s ∈ [0, 1] and i ≥ n0, let ti, t∞ ∈ [0, 1] be such that len(γi�[0,ti]) = s · len(γi)

and len(γ∞�[0,t∞]) = s · len(γ∞), so that γ̃i(s) = γi(ti) and γ̃∞(s) = γ∞(t∞). We
have

|len(γi�[0,ti])− len(γi�[0,t∞])| ≤ |len(γi�[0,ti])− len(γ∞�[0,t∞])|+ |len(γ∞�[0,t∞])− len(γi�[0,t∞])|
= |s · len(γi)− s · len(γ∞)|+ |len(γ∞�[0,t∞])− len(γi�[0,t∞])|

≤ s · δ
2

+
δ

2
≤ δ.

By the definition of δ, it follows that diam(γi([ti, t∞])) < ε
2 . This implies

|γ̃i(s)− γ̃∞(s)| = |γi(ti)− γ∞(t∞)|
≤ |γi(ti)− γi(t∞)|+ |γi(t∞)− γ∞(t∞)|

≤ ε

2
+
ε

2
= ε.

Thus γ̃i → γ̃∞ uniformly. Therefore, [γ] 7→ γ̃ is continuous. �

Given a family F ⊆ Π, define F̃ = {γ̃ : [γ] ∈ F}.

Corollary 11. A set F ⊆ Π is closed (respectively, compact) if and only if F̃ is a
closed (respectively, compact) subset of C[0, 1].

A classical result from metric geometry (see e.g. [3]) is that if L > 0 and 〈γm〉∞m=1

is a sequence of paths in a bounded set, with Euclidean path lengths ≤ L, and if γ̃m :
[0, 1] → Rn is the parameterization of γm by Euclidean path length (with domain
linearly rescaled to [0, 1]), then the sequence 〈γ̃m〉∞m=1 has a subsequence which
converges uniformly to a path of finite Euclidean length. This reparameterization
is necessary, as standard examples show (consider e.g. γm : [0, 1] → [0, 1] defined
by γm(s) = sm).

We will now prove a version of this result for the function len, where the uniform
bound on length assumption is replaced by a weaker restriction on the number
of long sections of the paths. Moreover, we prove that this condition is in fact a
characterization of those families of paths which can be parameterized so as to be
equicontinuous. A similar result is proved in [12] using Morse’s length function.

Theorem 12. Let F ⊆ Π. Suppose that

(†): for each ε > 0, there is a positive integer N such that for every
[γ] ∈ F , there is no collection of more than N pairwise disjoint
subintervals of [0, 1] whose images under γ have diameters ≥ ε.

Then the family F̃ = {γ̃ : [γ] ∈ F} is equicontinuous.
Conversely, if an equicontinuous family can be formed by choosing parameteri-

zations of all the paths in F , then F satisfies the property (†).

Proof. We treat the case n = 2. As usual, we identify R2 with C.
Fix ε > 0. Let N ≥ 1 be such that for every γ with [γ] ∈ F , there is no collection

of more than N pairwise disjoint subintervals of [0, 1] whose images under γ have

diameters ≥ ε
16 . Let δ = ε2

2N+7·N .
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Suppose for a contradiction that for some [γ] ∈ F there exist 0 ≤ s1 < s2 ≤ 1
with s2 − s1 < δ and ρ(γ̃(s1), γ̃(s2)) ≥ ε. Note that

len(γ̃�[0,s2]) = s2 · len(γ)

< s1 · len(γ) + δ · len(γ)

< len(γ̃�[0,s1]) + δ.

Let t0 ∈ [0, 1] be such that the line {ret0πi : r ∈ R} is orthogonal to the segment

γ̃(s1)γ̃(s2). Define W ⊂ [0, 1]× [0, 1]× (0, 1] by

W = [0, 1]× [t0 − 1
4 , t0 + 1

4 ]× [ ε8 ,
ε
4 ],

where the interval [t0 − 1
4 , t0 + 1

4 ] should be considered reduced mod 1 (i.e. it
represents the set of all t ∈ [0, 1] such that one of |t−t0|, |t−(t0−1)|, or |t−(t0 +1)|
is ≤ 1

4 ). Note that for any (x, t, µ) ∈ W , any strip Sx,t,µj (j ∈ Z) covers less than

half of the line segment γ̃(s1)γ̃(s2).
Consider a fixed x, t, µ ∈ W . Let C0, . . . , CN and D0, . . . , DN be the first N +

1 components of (γ̃�[0,s1])
−1(Sx,t,µj ) and (γ̃�[0,s2])

−1(Sx,t,µj ) (j ∈ Z), respectively,

ordered so that ‖γ̃(Ci)‖t ≥ ‖γ̃(Ci+1)‖t and ‖γ̃(Di)‖t ≥ ‖γ̃(Di+1)‖t for each i =

0, 1, . . . , N −1. So
∑N
i=0

‖γ̃(Ci)‖t
2i and

∑N
i=0

‖γ̃(Di)‖t
2i are the first N + 1 terms of the

sums Lx,t,µ(γ̃�[0,s1]) and Lx,t,µ(γ̃�[0,s2]), respectively.
Note that

(1) ‖γ̃(Di)‖t ≥ ‖γ̃(Ci)‖t for each i = 0, 1, . . . , N.

Moreover, there is some j ∈ {0, 1, . . . , N−1} such thatDj ⊂ (s1, s2) and ‖γ̃(Dj)‖t =
µ. Since such a component is absent in the list C0, . . . , CN , we have ‖γ̃(Di+1)‖t ≥
‖γ̃(Ci)‖t for each i = j, . . . , N − 1.

Now ‖γ̃(Dj)‖t = µ ≥ ε
8 , and ‖γ̃(DN )‖t < ε

16 by choice of N , so there must be
some i between j and N − 1 such that ‖γ̃(Di)‖t > ‖γ̃(Di+1)‖t + ε

8N . Hence

(2) ‖γ̃(Di)‖t > ‖γ̃(Ci)‖t +
ε

8N
.

It follows from (1) and (2) that

Lx,t,µ(γ̃�[0,s2]) > Lx,t,µ(γ̃�[0,s1]) +
ε/8N

2i

> Lx,t,µ(γ̃�[0,s1]) +
ε/8N

2N

= Lx,t,µ(γ̃�[0,s1]) +
ε

2N+3 ·N
Noting that the measure of W is 1 · 1

2 · (
ε
4 −

ε
8 ) = ε

16 , it follows that

len(γ̃�[0,s2]) ≥ len(γ̃�[0,s1]) +
ε

2N+3 ·N
· ε

16
= len(γ̃�[0,s1]) + δ.

But this contradicts the assumption that s2 − s1 < δ.
Thus for every [γ] ∈ F , if 0 ≤ s1 < s2 ≤ 1 with s2−s1 < δ, then ρ(γ̃(s1), γ̃(s2)) <

ε.

For the converse, suppose there is some ε > 0 such that for any positive integer
N , there exists a path γN with [γN ] ∈ F and a collection of N disjoint subintervals
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of [0, 1] whose images under γN have diameters ≥ ε. Note that at least one of these
subintervals must have width ≤ 1

N ; denote it by JN .
Let s ∈ [0, 1] be an accumulation point of the centers of the intervals JN , N =

1, 2, 3, . . .. Then for any δ > 0, there is some N such that JN ⊂ (s− δ, s+ δ), and
hence γN ((s−δ, s+δ)) has diameter ≥ ε. Thus we cannot choose parameterizations
of the paths in F to obtain an equicontinuous family. �

Theorem 12 implies in particular that if it is possible to parameterize the paths of
a family F to obtain an equicontinuous family, then the standard parameterization
will accomplish this.

Theorem 13. Let F ⊆ Π. Then F is compact if and only if the following two
properties are satisfied:

(1) the set {γ(0) : [γ] ∈ F} is bounded; and
(2) F satisfies the property (†) (from Theorem 12).

In particular, if F satisfies properties (1) and (2), then the closure of F̃ in C[0, 1]
is compact.

Proof. By the Arzelà-Ascoli theorem [5, Theorem 4.43], the closure of F̃ is compact

if and only if F̃ is equicontinuous and pointwise bounded, i.e. for every t ∈ [0, 1] the

set {γ̃(t) : γ̃ ∈ F̃} is bounded. By Theorem 12, equicontinuity of F̃ is equivalent to
F satisfying the property (†). Moreover, in the presence of (†), the condition (1)

is clearly equivalent to F̃ being pointwise bounded.

Finally, by Theorem 10, F is compact if and only if the closure of F̃ is compact.
�

5. Midpoint parameterization

One drawback to the standard parameterization of a path, introduced in the
previous section, is that it does not commute with reversal of orientation of a path.
That is, if we define r : [0, 1]→ [0, 1] by r(t) = 1− t, then for a non-constant path
γ, the standard parameterization of γ ◦ r is not the same as γ̃ ◦ r.

In this section we introduce a second parameterization of a path and consider
some applications, including a way to canonically define a homeomorphism be-
tween two arcs (or even between two families of arcs) once the endpoints have been
assigned.

Given a path γ, we define the midpoint parameterization γ∗ : [0, 1] → C as
follows. Let m ∈ (0, 1) be such that len(γ�[0,m]) = len(γ�[m,1]) = L. Define γ1, γ2 :

[0, 1] → C by γ(t) = γ1(m −mt) and γ2(t) = γ(m + (1 −m)t), and consider their
standard parameterizations γ̃1, γ̃2 : [0, 1]→ C. Then

γ∗(t) =

{
γ̃1(1− 2t) if 0 ≤ t ≤ 1

2

γ̃2(2t− 1) if 1
2 < t ≤ 1

Observe that γ∗ ◦ r = (γ ◦ r)∗.
As with the standard parameterization, the midpoint parameterization is unique

within each equivalence class of paths, in the sense that if γ1 ≈ γ2, then γ∗1 = γ∗2 .
We leave it to the reader to see that the following analogue of Theorem 10 also

holds (where the standard parameterization is replaced by the midpoint paramteri-
zation). We denote by Π∗ the set of all midpoint parameterizations of paths [0, 1]→
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Rn. Recall that the topology on Π is given by the metric ρ and that Π∗ is a subspace
of C[0, 1] = C([0, 1],Rn) with the metric dsup(γ1, γ2) = supt∈[0,1] |γ1(t)− γ2(t)|.

Theorem 14. Π∗ is a closed subset of C[0, 1], and the function [γ] 7→ γ∗ is a
homeomorphism from Π to Π∗.

An arc is a spaceA which is homeomorphic to the interval [0, 1]. By a parametriza-
tion of an arc A we mean a homeomorphism γ : [0, 1]→ A.

Given two arcs A1 and A2, and a bijection f between their endpoint sets, we
can extend f to a canonical homeomorphism F : A1 → A2 as follows. Choose
a parameterization γ1 of A1, and a parameterization γ2 of A2 such that γ2(0) =
f(γ1(0)) and γ2(1) = f(γ1(1)). Then given x ∈ A1, define F (x) = γ∗2 ((γ∗1 )−1(x)).
Observe that F is independent of the choice of orientation of γ1, since γ∗1 ◦ r =
(γ1 ◦ r)∗ and γ∗2 ◦ r = (γ2 ◦ r)∗ (hence the word “canonical”).

In the next result, we show that this canonical homeomorphism has some useful
convergence properties.

Definition 15. A collection of arcs LX is a lamination of a space X ⊂ Rn if:

(1) X =
⋃
LX ;

(2) any two distinct arcs in LX meet at most in one common endpoint;
(3) given a sequence 〈Ai〉∞i=1 of arcs in LX :

(a) if diamAi → 0, then any accumulation point of the arcs Ai is either
an endpoint of some arc in LX , or not in X;

(b) otherwise, there is an arc A∞ ∈ LX , a subsequence 〈Aij 〉∞j=1 and
homeomorphisms hj : A∞ → Aij such that dsup(hj , idA∞) → 0 as
j →∞.

Denote by E(LX) the set of all endpoints of the arcs in LX .

Note that the conclusion in condition (3)(b) is equivalent to the statement that
A∞ ∪

⋃
j Aij is homeomorphic to the product of [0, 1] and the convergent sequence

{0} ∪ { 1
n : n = 1, 2, . . .}.

Theorem 16. Let LX and LY be laminations of spaces X and Y , respectively.
Suppose f : E(LX)→ E(LY ) is a continuous function which maps the endpoints of
any arc in LX onto the set of endpoints of some arc in LY . Then there exists a
continuous extension F : X → Y of f which is one-to-one on each arc in LX .

Moreover, if additionally f is a homeomorphism and f−1 maps the endpoints of
any arc in LY to the endpoints of some arc in LX , then F is a homeomorphism.

Proof. Let P = {[γ] : γ parameterizes some arc A ∈ LX} and Q = {[λ] : λ
parameterizes some arc B ∈ LY }. Define the function g : P → Q by g([γ]) = [λ] if
f(γ(0)) = λ(0) and f(γ(1)) = λ(1).

Claim 16.1. g is continuous.

Proof of Claim 16.1. Suppose that 〈[γi]〉∞i=1 is a sequence of elements of P converg-
ing to [γ∞] ∈ P. By continuity of f , limi→∞ f(γi(0)) = f(γ∞(0)) and limi→∞ f(γi(1)) =
f(γ∞(1)), and it follows from property (3) (for LY ) that limi→∞ g([γi]) = g([γ∞]).

�(Claim 16.1)

Define F : X → Y as follows. Given A ∈ LX , choose γ parameterizing A. Let γ∗

be the midpoint parameterization of γ, and let λ∗ be the midpoint parameterization
of g([γ]). Now for each x ∈ A, define F (x) = λ∗((γ∗)−1(x)).
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Observe that the definition of F on an arc A does not depend on the choice of
orientation of the parameterization γ of A, because γ∗◦r = (γ◦r)∗, λ∗◦r = (λ◦r)∗,
and g([γ◦r]) = [λ◦r]. Thus F is well-defined on each arc A. Moreover, if x ∈ E(LX),
then F (x) = f(x). Thus F is well-defined on X (since two arcs in LX meet at most
in an endpoint), and extends f . It is also clear that F is one-to-one on any arc in
LX since γ∗ and λ∗ are homeomorphisms.

Claim 16.2. F is continuous.

Proof of Claim 16.2. Suppose 〈xi〉∞i=1 is a sequence in X converging to x∞ ∈ X.
For each n ∈ N∪{∞}, let An ∈ LX be an arc containing xn, and let Bn = F (An) ∈
LY .

If diam(Ai)→ 0, then by (3) x∞ is an endpoint of A∞. For each i, let x′i be an
endpoint of Ai. Then x′i → x∞, so by continuity of f , f(x′i)→ f(x∞). Thus both
endpoints of the arcs Bi converge to f(x∞), so again by (3) we have diam(Bi)→ 0
and f(xi)→ f(x∞).

Otherwise, we may assume (by taking a subsequence of xi, and rechoosing A∞ if
necessary in the case that x∞ is an endpoint), that there are homeomorphisms hi :
A∞ → Ai such that dsup(hi, idA∞)→ 0. For each n ∈ N∪{∞}, let γn parameterize
An, and let g([γn]) = [λn], so that λn parameterizes Bn. We may assume (by
choosing appropriate orientations) that γi(0) → γ∞(0) and γi(1) → γ∞(1). Then
[γi]→ [γ∞], and by continuity of g, [λi]→ [λ∞].

By Theorem 14, we have γ∗i → γ∗∞ and λ∗i → λ∗∞ uniformly. For each n ∈
N ∪ {∞}, let tn ∈ [0, 1] be such that γn(tn) = xn. Then by uniform convergence
and continuity, ti → t∞, and λ∗i (ti)→ λ∗∞(t∞). Thus

F (xi) = λ∗i ((γ
∗
i )−1(xi)) = λ∗i (ti)→ λ∗∞(t∞) = F (x∞)

as needed. �(Claim 16.2)

If, in addition, f is a homeomorphism and f−1 also maps the endpoints of any
arc in LY to the endpoints of some arc in LX , then f−1 extends in the same
way to a continuous function Y → X which is the inverse of F . Thus F is a
homeomorphism. �

For a fixed space X ⊂ Rn with a lamination LX , let

M = {(Y,LY , f) : Y ⊂ Rn is bounded, LY is a lamination of Y , and

f : E(LX)→ E(LY ) satisfies the hypotheses of Theorem 16}.

Theorem 16 affords an operator Θ from M to the set Cb(X,Rn) of bounded con-
tinuous functions from X into Rn, where if F = Θ(Y,LY , f) then F (X) ⊂ Y and
F �E(LX) = f .

We next prove that this operator is continuous, in the sense that if LY1 and LY2

are nearby laminations of two spaces Y1 and Y2, and if f1 : E(LX) → E(LY1
) and

f2 : E(LX) → E(LY2
) are close functions as in Theorem 16, then the extensions

F1 : X → Y1 and F2 : X → Y2 are close as well. To make this precise, we define a
metric d on M by

d ((Y1,LY1
, f1), (Y2,LY2

, f2)) = sup{ρ([λ1], [λ2]) : γ parameterizes an arc A ∈ LX
and λi parameterizes the corresponding arc in LYi
with λi(0) = fi(γ(0)) and λi(1) = fi(γ(1)) for i = 1, 2}.
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It is straightforward to verify that d is a metric on M . On Cb(X,Rn), we use the
metric dsup.

Theorem 17. Let X ⊂ Rn, and let LX be a lamination of X. The operator Θ :
M → Cb(X,Rn) given by Theorem 16 is continuous. Moreover, Θ(X,LX , idE(LX)) =
idX .

Proof. Let (Y0,LY0 , f0) ∈M , and let F0 = Θ(Y0,LY0 , f0) ∈ Cb(X,Rn). Let ε > 0.
Since Y0 is bounded, by the definition of a lamination, the set {[λ] : λ parameter-

izes an arc B0 ∈ LY0
with diam(B0) ≥ ε

2} is compact in Π. Therefore, by Theorem
14, there exists δ > 0 such that if λ0 parameterizes an arc in LY0

of diameter ≥ ε
2

and if λ is any path with ρ([λ0], [λ]) < δ, then dsup(λ∗0, λ
∗) < ε. We may assume

that δ ≤ ε
2 .

Observe that if diam(λ([0, 1])) < ε
2 and ρ([λ0], [λ]) < ε

2 , then every point in the
range of λ0 is within ε of each point in the range of λ, hence dsup(λ∗0, λ

∗) < ε as
well. Thus in fact for any arc B0 ∈ LY , if λ0 parameterizes B0 and if λ is any path
with ρ([λ0], [λ]) < δ, then dsup(λ∗0, λ

∗) < ε.
Let (Y,LY , f) ∈M with d((Y0,LY0

, f0), (Y,LY , f)) < δ, and let F = Θ(Y,LY , f).
Let A ∈ LX , let γ parameterize A, and let λ0 and λ parameterize the corre-

sponding arcs B0 ∈ LY0 and B ∈ LY with λ0(0) = f0(γ(0)), λ0(1) = f0(γ(1)),
λ(0) = f(γ(0)), and λ(1) = f(γ(1)). By definition of d, we have ρ([λ0], [λ]) < δ,
hence by the choice of δ, dsup(λ∗0, λ

∗) < ε. Moreover, by the definition of F and F0

from Theorem 16, dsup(F0�A, F �A) = dsup(λ∗0, λ
∗). Thus since A was arbitrary, we

have dsup(F0, F ) < ε.
The second part of this Theorem is clear from the definition of Θ. �

6. Generalized paths

To see that the assumption that X is a dendrite in Proposition 5 is necessary,
consider the identity function idD on the unit disk D ⊂ C with boundary circle S1.
It is not difficult to see that len(idD) < len(idS1).

Moreover, consider the embedding O of the circle S1 depicted in Figure 1. Let
γ : [0, 1] → O be a path which goes exactly once around the circle O, starting
and ending at the indicated point p, and otherwise one-to-one. We claim that
len(γ) < len(idO), which can be argued as follows:

Given a strip Sx,t,µj containing the point p, the component C of O ∩ Sx,t,µj

containing p corresponds to two components [0, c] and [d, 1] of γ−1(Sx,t,µj ). For

nearly horizontal strips (i.e. for t values close to 0 or 1) the sets proj⊥t (γ([0, c]))

and proj⊥t (γ([d, 1])) may overlap; however, because of the oscillation up and down
on the left and right sides of the circle O, for such parameters x, t, µ there are
many other components of [0, 1] ∩ γ−1(Sx,t,µj ) and of O ∩ Sx,t,µj (j ∈ Z) with large

projections, hence the weighted sums Lx,t,µ(idO) and Lx,t,µ(γ) will differ only very

slightly. For all other values of x, t, µ, the sets proj⊥t (γ([0, c])) and proj⊥t (γ([d, 1]))

share only the point proj⊥t (p), and one of them will be added with a smaller weight
in the sum Lx,t,µ(γ) than that of C in Lx,t,µ(idO). In particular, this is so for values

of x, t, µ for which the strips Sx,t,µj are wide and nearly vertical, and for these values

resulting difference between Lx,t,µ(idO) and Lx,t,µ(γ) will be more pronounced due
to the small number of terms in these sums. Thus, with an appropriate amount of
oscillation, we obtain that len(γ) < len(idO).
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Figure 1. A particular embedding of the circle in the plane.

Now if we let A be a very small arc in O containing the point p and such that
len(idA) < len(idO) − len(γ), and let A′ = O rA, then it follows that len(idO) >
len(idA) + len(idA′).
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